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Quantum Mechanics Based on Probability Wave
Functions Induced by the Minimum Mean
Deviation from Statistical Equilibrium. I

Silviu Guiasu1
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The maximum entropy probability distributions are generally used as probabilistic
models for describing statistical equilibrium subject to given mean values of
some random variables. The paper deals with the construction of probability
wave functions by minimizing the mean deviation from statistical equilibrium
subject to generalized correlations, induced by random fluctuations, whose values
are determined looking for stationary points of the mean energy of the system.
The results are applied to the study of several quantum systems (the free particle
in a box, two independent particles in a box, the harmonic oscillator, and the
hydrogen atom, without having to solve the corresponding SchroÈ dinger equation.

1. INTRODUCTION

The SchroÈ dinger equation plays a central role in nonrelativistic quantum

mechanics and some textbooks include it among the postulates of the theory.

Introduced in 1926, its solution is the so-called c -function, initially thought

of by SchroÈ dinger to represent a real disturbance, a matter wave in space.

He soon abandoned these matter waves and turned to an ª electromagnetic
interpretationº in which c * c would be a measure of the density of electric

charge, or rather a sort of ª weighting function.º He wrote (SchroÈ dinger, 1926,

the fourth paper): ª c * c is a sort of weight function in the configuration

space of the system. The wave mechanical configuration of the system is a

superposition of many, strictly speaking all, the kinematically possible point-

mechanical configurations. Thereby every point-mechanical configuration
contributes to the true wave mechanical configuration with a certain weight,

1 Department of Mathematics and Statistics, York University, Toronto, Ontario M3J 1P3,
Canada.

957

0020-7748/98/0300-95 7$15.00/0 q 1998 Plenum Publishing Corporation



958 Guiasu

which is given precisely by c * c . If one likes paradoxes, one can say that

the system is found simultaneously in all conceivable kinematic locations

but not in all of them in `equal strength’ .º It was Born (1926) who interpreted

c * c as being a probability density. As mentioned by Moore (1989), for

SchroÈ dinger, c * c pictures a continuous cloud of `something’ (presumably

charge and mass), whereas Born assumes point particles (electrons) within

the atom and interprets c * c as being the probability density of finding a

particle at a certain location. In a letter to Einstein (June 1946), SchroÈ dinger

wrote, ª God knows I am no friend of the probability theory, I have hated it

from the first moment when our dear friend Max Born gave it birth. For it

could be seen how easy and simple it made everything, in principle, everything

ironed out and the true problems concealed . . . And actually not a year passed

before it became an official credo, and it still is.º It seems today that in fact

SchroÈ dinger ’ s objections rather referred to the interpretation of the concept

of probability. A frequency interpretation of probability (if the result A of an

experiment has the probability p, it means that if the experiment is repeated

many times then the fraction of outcomes that give the result A approximately

equals p) would suggest that Born’ s probability density c * c rather refers to

a statistical ensemble of systems. To SchroÈ dinger, adopting such a viewpoint

ª we cut ourselves off from ever applying rational probability considerations

to a single event.º On the other hand, a purely subjective interpretation of

probability, apparently more acceptable to SchroÈ dinger, would suggest that

Born’ s probabilistic interpretation of the wave function c does not relate to

a system, but to our knowledge about a system. Summarizing, the interpreta-

tion of the solution c of the SchroÈ dinger equation is somewhat mysterious,

but | c | 2 5 c * c has a clear meaning: it is the probability density of the particle

position at given time. Details about Max Born’ s statistical interpretation of

quantum mechanics may be found in Pais (1982). In 1954 Born was awarded

the Nobel Prize ª for his fundamental research, especially for his statistical

interpretation of the wave function.º

As the ultimate use of the SchroÈ dinger equation is to provide us

with probabilistic models for the behavior of quantum systems, a natural

question comes up: Is it possible to build such probabilistic models without

having to write and solve the corresponding SchroÈ dinger equation? The

question is even more justified if we take into account that the SchroÈ dinger

equation may be solved exactly only for a very limited number of quantum

systems, namely the free particle in a box, the harmonic oscillator, and

the hydrogen atom.

There have been attempts to deduce the SchroÈ dinger equation from

several variational principles or from prior suppositions instead of taking it

as a postulate of quantum mechanics. Here are some of them:
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(a) As shown in FluÈ gge (1974, Vol. 1, pp. 2±5), the SchroÈ dinger equation

may be obtained from the Euler equations corresponding to the minimization

of the energy integral.
(b) Bohm (1984) suggested, ª Instead of starting from Born’ s probability

distribution | c | 2 as an absolute and final and unexplainable property of matter,

we have [to show] how his property could come out of random motions

originating in a subquantum mechanical level.º Several papers (Nelson, 1985;

Baublitz, 1988) have attempted to derive the SchroÈ dinger equation from

classical mechanics and an assumed Markov diffusion stochastic process
induced by random fluctuations of a submicroscopic medium. The difficulty

in accepting such an approach resides in the fact that in quantum mechanics

it is not possible to assume that the sample space on which all random

variables of the stochastic process are supposed to be defined remains unique

and invariable.

(c) Frieden (1989, 1990, 1991) aimed at building up a probabilistic
model based on the statistical estimation theory from which the SchroÈ dinger

equation could be derived as a consequence. Dealing with the position of a

particle on the real line, for instance, the SchroÈ dinger equation is obtained

in this approach by minimizing a linear combination of the Fisher (1922)

information, measuring the degree of ruggedness of a probability distribution,
and the mean kinetic energy of the particle.

(d) Guiasu (1992) used the minimum x 2 deviation from the maximum

entropy probability distribution subject to given mean values and the quantiza-

tion rules of the old quantum theory in order to derive the same conclusions

as those induced by the corresponding SchroÈ dinger equation for a free particle

in a box, the harmonic oscillator, and the hydrogen atom. Other results in
the same direction of thought may be found in Slater (1994) and Preda et
al. (1995).

The objective of this paper is to combine the approaches (a) and (d),

but without using the Euler equations from (a) and the old quantization rules

from (d). The new approach obtained this way is simple and straightforward.

The probabilistic model obtained yields the same conclusions as those induced
by solving the SchroÈ dinger equation for a free particle in a box, two interacting

particles in a box, the harmonic oscillator, or the hydrogen atom. In a personal

communication made in 1985 to Moore (1989, p. 416), H. W. Peng mentioned

that SchroÈ dinger, in spite of his much discussed reservations about the proba-

bilistic interpretation of the undulatory mechanics, once had told him that

ª Quantum Mechanics was born in statistics and it will end in statistics.º The
objective of this paper is to show that SchroÈ dinger was right when he made

such a statement.

Our program may be summarized in one sentence: we are looking for

a probabilistic model of stationary energy obtained by minimizing the mean



960 Guiasu

deviation from statistical equilibrium subject to given generalized correlations

induced by random internal or/and external fluctuations. Let us explain

each step:

1. Statistical Equilibrium. We start from statistical equilibrium described

by a maximum entropy probability distribution subject to constraints induced

by given mean values of some random variables. This is a problem well

studied in the literature. Over 125 years ago, Boltzmann (1872) introduced

the famous H-function in his research on the behavior of the molecules of
a gas. Seventy-six years later, Shannon (1948) showed that the discrete

analogue of Boltzmann’ s H-function, called the probabilistic entropy, may

be accepted as a measure of the amount of uncertainty contained by any

probability distribution. If the probability distribution is given, then its entropy

is a number showing the amount of uncertainty contained by it. If, for instance,

the set of possible outcomes is given and we know nothing more, then
the entropy is maximum for the uniform distribution. The inverse problem,

however, is much more important: if the probability distribution is unknown

and the only information available consists of one or several mean values of

one or several random variables, then from the infinite set of feasible probabil-

ity distributions compatible with such given constraints, we choose the one

that maximizes entropy. The solution of this variational problem is the most
uncertain, or unbiased (i.e. ignoring no possibility) probability distribution

compatible with the given constraints represented by mean values. It is the

closest probability distribution to the uniform distribution when the given

mean values are known because, as we have said before, the uniform distribu-

tion maximizes entropy when there are no constraints imposed. This varia-

tional problem is known as the maximum entropy principle (MEP) and it
was explicitely formulated by Jaynes (1957) and implicitly by von Neumann

(1932). Eventually, it was surprising to see that well-known probability distri-

butions could be rediscovered as solutions of the MEP in a natural way.

Thus, on the positive real axis [0, 1 ` ), the solution of the MEP subject to

the mean value m is the exponential probability distribution E( m ). On the
real axis ( 2 ` , 1 ` ), the solution of the MEP subject to the mean m and the

variance s 2 is the normal distribution N( m , s 2). On an arbitrary interval [a, b]

of the real axis, if we have no constraints attached, then the probability dis-

tribution of maximum entropy is the uniform distribution U(a, b). As shown

in Guiasu (1990), practically all the main probability distributions may be

obtained as solutions of constrained variational problems similar to MEP.

2. Systems of Orthonormal Functions. Once the probability distribution

that describes statistical equilibrium is obtained, and u is its density, we

choose a sequence of orthogonal functions with the weight u as a system of

generalized coordinates. Such systems of orthogonal functions are the
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Laguerre polynomials, for the exponential distribution E( m ), the Hermite

polynomials, for the normal distribution N( m , s 2), the generalized Laguerre

polynomials, for the gamma distribution G(1/ a , b 1 1), and either the

trigonometric system or the Legendre (spherical) polynomials, for the uniform

distribution U(a, b), for instance.

3. One-Dimensional Probability Wave Functions. As long as the statisti-

cal equilibrium is not perturbed, the mean values of the generalized coordi-

nates remain equal to zero. If, however, random perturbations induced by

internal or external interactions alter the statistical equilibrium, then some

of these mean values cease to be equal to zero. We minimize the mean

deviation from statistical equilibrium subject to correlations between general-

ized coordinates induced by the random perturbations induced by internal

or/and external interactions. The mean deviation is measured using Pearson’ s

x 2 indicator, which is a weighted Euclidean distance. By minimizing x 2

subject to given mean values, we force the small initial probabilities to

remain basically the same, focusing on changes induced by constraints on

the probabilities of the most probable outcomes. In general, a wave is just

any disturbance to a field. In our context, we introduce a probability wave

function to be the minimum deviation from statistical equilibrium due to

random internal or/and external fluctuations. Once the probability wave func-

tion x is obtained, the normed square of its absolute value is used as a

probability density function in the set of possible configurations. Bohm (1984)

argued in favor of paying attention to random fluctuations in general and at

the quantum level in particular: ª It is not relevant where such fluctuations

come from; all that is important is to assume that they exist and to see their

effects.º Certainly, at the quantum level the statistical equilibrium of a system

may be easily affected by interactions with other quantum systems or by

the measurement process performed by an external macroscopic observer.

Minimizing the x 2 indicator, a slight generalization of the well-known least

square method of Legendre (1805) and Gauss (1821/1823), we want to

determine the probability wave of minimum deviation from equilibrium sub-

ject to the mean effects of the perturbations or interactions, focusing on

changes induced by the given constraints on the most probable outcomes.

As mentioned by BuÈ ler (1981), ª The method of least squares was one of

Gauss’ s most efficient tools in his research. . . Least squares were Gauss’ s

indispensable theoretical tool in experimental research; increasingly, he came

to see it as the most important witness to the connection between mathematics

and nature.º The weighted least squares generalization gives more flexibility

and makes a smooth connection between the Euclidean distance and the

mean deviation.
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4. Multidimensional Probability Waves. For incompatible entities (like

position and momentum, for instance) it is senseless to talk about a joint

probability distribution. For independent compatible entities (like the three

components of the position of a particle in a three-dimensional Euclidean

space, for instance), the joint probability density is simply the product of the

probability densities (i.e., the marginals) of the corresponding entities. For

dependent compatible entities (like the positions of several interacting parti-

cles, for instance) the joint probability distribution is not uniquely determined

by the marginals and the partial information available about their dependence

(like covariances, or correlations, for instance). We construct the multidimen-

sional probability wave obtained by minimizing the mean x 2 deviation from

the direct independent product of the marginals subject to the given mixed

moments (or generalized covariances). The solution of such a variational

problem assumes nothing about the dependence among the components

beyond the given mixed moments.

5. Stationary Values of the Mean Energy. Once the one- or multidimen-

sional probability wave is obtained by solving the above-mentioned varia-

tional problem, we determine the stationary points of the corresponding mean

energy. In this way we determine the stationary probability waves whose

normed square may be used as a probability density for predicting the mean

values of some observables of interest.

6. Applications. The formalism applied to the study of a free particle

in a box, of two independent particles in a box, of the harmonic oscillator,

and of the hydrogen atom. The second part of this paper will show that the

formalism presented here may be extended to the study of quantum systems

for which the corresponding SchroÈ dinger equation cannot be solved exactly,

such as the helium and lithium atoms, for instance.

2. THE MATHEMATICAL MODEL

Let D be a domain in the k-dimensional Euclidean space Rk. We denote

^ f & 5 # D

f (x)dx, ^ f *g & 5 # D

f *(x)g(x)dx, | f | 5 ^ f *f & 1/2

provided that the above integrals exist, wheref* means the complex conjugate

of f.
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2.1. Statistical Equilibrium

Long ago, Boltzmann (1872) defined the expression

E 5 #
1 `

0

f (x, t) H ln F f (x, t)

! x G 2 1 J dx

and showed that it possessed the properties of a negative entropy: thus 2 E
always increased monotonically with time t if the distribution function f(x,t)
deviated from the Maxwellian distribution ! x exp{ 2 x/(kT )}, with x denoting

the kinetic energy, T the absolute temperature, and k a positive constant; it

stayed constant if the latter distribution was assumed. This result, i.e.,

2
dE

dt
$ 0

was later called the ª H-theorem.º

Let u be an arbitrary probability density function defined on D # R1.

The amount of uncertainty contained by u is measured by the (absolute)
entropy H(u) 5 2 ^ u ln u & , introduced by Shannon (1948) by analogy with

Boltzmann’ s function from statistical mechanics. When u is given, then H(u)

is a number. In many applications, however, u is not known and the only

information available is provided by mean values of some random variables.

In an everchanging world, the mean values seem to be the only kind of data

accessible to us on which we can rely in building up a relatively stable model
of reality. Generally, however, there are several (very often infinitely many)

probability density functions u compatible with the given mean values.

According to the principle of maximum entropy, used implicitly by von

Neumann (1932) and formulated explicitly and generally by Jaynes (1957),

we choose the probability density function u which maximizes H(u) subject
to the constraints induced by the given mean values. Such a solution u is the

most unbiased probability density function (i.e. the most uncertain, ignoring

no possibility) compatible with the given constraints. The principle of maxi-

mum entropy is an objective criterion for constructing a subjective probabilis-

tic model when some mean values of some random variables are known. A

probability density function u, solution of the principle of maximum entropy,
describes the statistical equilibrium corresponding to the given mean values

used as constraints of this nonlinear variational problem. The following results

are known in the literature and may be obtained without difficulty by applying

the classic Lagrange multipliers method from the calculus of variation.

Proposition 1. If D 5 [a, b], then the solution of the nonlinear program

maxu H(u) subject to ^ u & 5 1 is the uniform distribution U(a, b) with parame-

ters a and b, whose density is
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u(x) 5
1

b 2 a
, x P [a, b] (1)

Proposition 2. If D 5 [0, 1 ` ), then the solution of the nonlinear program
maxu H(u) subject to

^ u & 5 1, ^ xu(x) & 5 m

is the exponential distribution E( m ) whose density is

u(x) 5
1

m
e 2 x/ m , x P [0, 1 ` ) (2)

Proposition 3. If D 5 ( 2 ` , 1 ` ), then the solution of the nonlinear
program maxu H(u) subject to

^ u & 5 1, ^ xu(x) & 5 m , ^ (x 2 m )2u(x) & 5 s 2

is the normal distribution N( m , s 2) with parameters m and s 2, whose density is

u(x) 5
1

s ! 2 p
e 2 (x 2 m )2/(2 s 2), x P ( 2 ` , 1 ` ) (3)

Let u be a probability density function and v a nonnegative function, both
defined on D # R1, such that u is absolutely continuous with respect to v,
which means that u(x) 5 0 if v(x) 5 0. The relative entropy of u with respect

to the reference measure of density v [also called the Kullback±Leibler (1951)

indicator, or the divergence of u with respect to v] is defined by

H(u | v) 5 K u ln
u

v L 5 2 ^ u ln v & 2 H(u)

provided that the integrals exist. We have H(u | v) $ 0 with equality if and

only if u 5 v, u 2 almost everywhere. Obviously, if the reference function v
is constant on D, i.e., v(x) 5 c (c Þ 1), then the relative entropy is just the

negative absolute entropy up to an additive constant, namely

H(u | v) 5 2 ln c 2 H(u)

In particular, if D 5 [a, b] and v is the probability density of the uniform

distribution on [a, b], then u is absolutely continuous with respect to v and

H(u | v) 5 ln(b 2 a) 2 H(u)

which shows that H(u) measures how much the probability density u differs

from the uniform distribution with respect to the logarithmic mean. According

to the principle of minimum relative entropy, we determine the probability

density u which is the closest one to the reference measure of density v
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subject to given mean values of some random variables. Thus, the principle

of maximum (absolute) entropy may be viewed as a special case of the

principle of minimum relative entropy when the reference measure is just
the uniform distribution. The next proposition (Guiasu (1990)) may be proved

using the standard Lagrange multipliers method:

Proposition 4. If D 5 [0, 1 ` ), and v(x) 5 x b ( b . 2 1), then the
solution of the nonlinear program minu H(u | v) subject to

^ u & 5 1, ^ xu(x) & 5 m

is the gamma distribution G(1/ a , b 1 1), with parameters a and b 1 1,

whose density is

u(x) 5
1

a b 1 1 G ( b 1 1)
x b e 2 x/ a , x P [0, 1 ` ) (4)

where a 5 m /( b 1 1).

2.2. Systems of Orthonormal Functions

Let u be a probability density function on the set D # R1, and {Un, n 5
0, 1, . . .}, U0 [ 1, a sequence of orthonormal functions with the weight u, i.e.,

^ UnUlu & 5 H 1 if l 5 n

0 if l Þ n

which implies that |Un| 5 1, for all n (n 5 0, 1, . . .), with ^ U0u & 5 1, and

^ Unu & 5 0 for all n (n 5 1,2,. . .). We call {Un, n 5 0, 1, . . .} a system of

generalized coordinates associated to the probability density function u.
The four probability density functions describing statistical equilibrium

listed above have well-known corresponding systems of orthonormal

functions:

(a) A system of orthonormal polynomials with the weight (1) is

Un(x) 5 (2n 1 1)1/2Pn 1 2

b 2 a
x 2

a 1 b

b 2 a 2 (n 5 0, 1, . . .) (5)

where Pn(x) is the Legendre (spherical) polynomial of degree n. The first

ones are

P0(x) 5 1, P1(x) 5 x, P2(x) 5
1

2
(3x2 2 1)

P3(x) 5
1

2
(5x3 2 3x), P4(x) 5

1

8
(35x4 2 30x2 1 3)
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P5(x) 5
1

8
(63x5 2 70x3 1 15x)

A system of orthonormal functions with the weight u(x) 5 1/a on D 5
[0, a] is the trigonometric system

U0 [ 1, Un(x) 5 ! 2sin
n p
a

x (n 5 1, 2, . . .) (6)

A system of orthonormal functions with the weight u(x) 5 1/a on D 5
[ 2 a/2, a/2] is the trigonometric system

U0(x) 5 1, Un(x) 5 5
! 2 sin

n p
a

x if n is even

! 2 cos
n p
a

x if n is odd

for n 5 1, 2, . . . .

(b) A system of orthonormal polynomials with the weight (2) is

Un(x) 5 Ln 1 x

m 2 (n 5 0, 1, . . .) (7)

where Ln(x) is the Laguerre polynomial of degree n. The first ones are

L0(x) 5 1, L1(x) 5 2 x 1 1, L2(x) 5
1

2
(x2 2 4x 1 2)

L3(x) 5
1

6
( 2 x3 1 9x2 2 18x 1 6)

L4(x) 5
1

24
(x4 2 16x3 1 72x2 2 96x 1 24)

L5(x) 5
1

120
( 2 x5 1 25x4 2 200x3 1 600x2 2 600x 1 120)

(c) A system of orthonormal polynomials with the weight (3) is

Un(x) 5 (n!) 2 1/2Hen 1 x 2 m
s 2 , Hen(x) 5 2 2 n/2Hn 1 x

! 2 2 (8)

where n 5 0, 1, . . . and Hn(x) is the Hermite polynomial of degree n. The

first ones are
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H0(x) 5 1, H1(x) 5 2x, H2(x) 5 4x2 2 2, H3(x) 5 8x3 2 12x

H4(x) 5 16x4 2 48x2 1 12, H5(x) 5 32x5 2 160x3 1 120x

(d) A system of orthonormal polynomials with the weight (4) is

Un(x) 5 1 n! G ( b 1 1)

G ( b 1 n 1 1) 2
1/2

L( b )
n 1 x

a 2 (n 5 0, 1, . . .) (9)

where L( b )
n (x) is the generalized Laguerre polynomial of degree n and order

b . We have

L(k)
n (x) 5 o

n

l 5 0
( 2 1)l 1 n 1 k

n 2 l 2 1

l!
xl, Ln(x) 5 L(0)

n (x)

Some such polynomials are

L(k)
n (0) 5 1 n 1 k

n 2 ; L(k)
0 (x) 5 1; L(k)

1 (x) 5 1 1 k 2 x

L(1)
2 (x) 5

1

2
(6 2 6x 1 x2); L(1)

3 (x) 5
1

6
(24 2 36x 1 12x2 2 x3)

L(1)
4 (x) 5

1

24
(120 2 240x 1 120x2 2 20x3 1 x4)

L(2)
2 (x) 5

1

2
(12 2 8x 1 x2); L(2)

3 (x) 5
1

6
(60 2 60x 1 15x2 2 x3)

L(2)
4 (x) 5

1

24
(360 2 480x 1 180x2 2 24x3 1 x4)

The generalized Laguerre polynomials satisfy the following equalities:

L( b 2 1)
n (x) 5 L( b )

n (x) 2 L( b )
n 2 1(x) (10)

x
d2

dx2 L( b )
n (x) 1 ( b 1 1 2 x)

d

dx
L( b )

n (x) 1 nL( b )
n (x) 5 0 (11)

Details about the orthonormal polynomials mentioned above may be

found in Abramowitz and Stegun (1972) or in Gradshteyn and Ryzhik (1980);
they may be easily generated using the computer package MATHEMATICA

(Wolfram, 1991).

2.3. One-Dimensional Probability Waves

Let u be a probability density on D # R1 and let {Un, n 5 0, 1, . . .},

U0 [ 1, be a sequence of orthonormal polynomials with the weight u. As
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mentioned before, as long as nothing alters the statistical equilibrium

described by the probability density function u, we have ^ Unu & 5 0 (n 5 1,

2, . . .) and ^ U0u & 5 ^ u & 5 1. Very often, however, random fluctuations alter
such a statistical equilibrium and the probability density function u has to

be replaced by another probability density function. If the sequence {Un, n 5
0, 1, . . .} is complete with respect to the weight u, then another probability

density function f on D may be written as

f 5 u 1 1 1 o
1 `

n 5 1
cnUn 2 (12)

where cn 5 ^ Unf & is the Un-moment of f or the mean fluctuation in the

direction Un, and the sum is taken with respect to the values of n (n 5 1, 2, . . .).

The weighted deviation of f from u is the probability wave function

x 5
f 2 u

! u
5 ! u o

1 `

n 5 1

cnUn (13)

The probability density function generated by the probability wave func-

tion of the minimum weighted deviation from u induced by the mean fluctua-

tions {cn, n 5 1, 2, . . .} is

1 o
1 `

n 5 1

c2
n 2

2 1

x 2

The elementary probability wave functions are

c 0 5 ! u, x n 5 ! uUn (n 5 1, 2, . . .)

where c 0 is the ground probability wave function induced by the probability

density function u, and x n is the elementary wave function of level n. Therefore

the probability wave x is a linear combination of the elementary probability
wave functions, namely,

x 5 o
1 `

n 5 1

cn x n

The jump from level l to level n is defined by c l,n 5 x n 2 x l. The elementary

jumps are

c n 5 c n 2 1,n 5 x n 2 x n 2 1, where x 0 5 c 0

Using the Lagrange multipliers method, we obtain:

Proposition 5. The solution of the quadratic program
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min
f

x 2 5 ^ x 2 & 5 K 1 f

u
2 1 2

2

u L
subject to

^ Un f & 5 cn (n 5 1, 2, . . . , N) (14)

is

f 5 u 1 1 1 o
N

n 5 1

cnUn 2 (15)

The least x 2 technique is a weighted variant of the least squares method of

Legendre and Gauss. Minimizing x 2 subject to given mean values, we force
the small initial probabilities to remain basically the same, focusing on

changes induced by the constraints on the most probable outcomes.

Practically, cn is estimated by calculating a confidence interval for a

mean value. If {x1, . . . , xM} is a random sample of size N from the population

to which both u and f refer, we calculate the sample mean

U (M)
n 5

1

M
[Un(x1) 1 ? ? ? 1 Un(xM)]

An 100(1 2 a )% confidence interval for cn is

1 U (M)
n 2 t a /2,M 2 1

s(M)
n

! M
, U (M)

n 1 t a /2,M 2 1

s(M)
n

! M 2
where t a /2,M 2 1 is the critical point of the t-distribution with M 2 1 degrees

of freedom, corresponding to the significance level a /2, and s(M)
n is the sample

standard deviation

s(M)
n 5

1

M 2 1 o
M

k 5 1 F Un(xk) 2 U (M)
n G

2

Introducing (15) into (13), we obtain the one-dimensional probability

wave

x 5 ! u o
N

n 5 1
cnUn (16)

generated by the deviation from u due to the generalized moments (14).
Introducing Un(x) given by (5), (7), or (8) into (12) [or into (15), as an

approximation of (12)] we obtain the closest probability density function [or

an approximation of it when using (15)] to u given by (1), (2), or (3),

respectively, when the generalized moments cn are given, where closeness
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is measured using Pearson’ s x 2 indicator, expressed by the squared amplitude

of the probability wave (13). As long as the statistical equilibrium described

by the probability density function u remains unchanged, no probability wave
is generated. When the occurrence of random fluctuations is detected by

estimating the generalized moments (14), then the probability wave (16)

shows the deviation from the statistical equilibrium described by u. An

external observer can generally observe only a change in an equilibrium state.

2.4. Multidimensional Probability Wave

Let u and v be two probability density functions on D1 # R1 and D2 #
R1, respectively, and let {Un, n 5 0, 1, . . .} and {Vl, l 5 0, 1, . . .} (U0 [
1, V0 [ 1) be two complete systems of orthonormal functions on D1 and D2

with the weights u and v, respectively. If there is independence between
marginals, then the joint probability density on D1 3 D2 is simply the direct

product uv. But what happens if there is interdependence between the two

components?

Consider the system of functions {Un Vl; n, l 5 0, 1, . . .} on D1 3 D2

with the weight uv. A joint probability density function f on D1 3 D2 has

the form

f 5 uv 1 1 1 o
1 `

n 5 0
o
1 `

l 5 0
(n,l) Þ (0,0)

cnlUnVl 2 (17)

Such a joint probability density function is the closest one, in the x 2

sense, to the direct independent product uv subject to the generalized mixed

moments (or correlations)

cnl 5 ^ UnVl f &

as shown by the next proposition, whose proof is a standard application of

the calculus of variation.

Proposition 6. Let

x 5
f 2 uv

! uv
5 1 f

uv
2 1 2 ! uv (18)

be the weighted deviation of f from the independent direct product uv. The

solution of the quadratic program

min
f

x 2 5 ^ x 2 &
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subject to

^ UnVl f & 5 cnl; (n 5 0, 1, . . . , N; l 5 0, 1, . . . , L; (n, l) Þ (0, 0))

(19)

is the density

f 5 uv 1 1 1 o
N

n 5 0
o
L

l 5 0
(n,l) Þ (0,0)

cnlUnVl 2 (20)

Introducing (20) into (18), we obtain the two-dimensional probability wave

x 5 ! uv o
N

n 5 0
o
L

l 5 0
(n,l) Þ (0, 0)

cnlUnVl (21)

generated by the deviation from independence of u and v due to the generalized

correlations (19). The elementary probability wave functions are

c 00 5 ! uv, x nl 5 ! uv UnVl,

(n 5 0, 1, . . . ; l 5 0, 1, . . . ; (n, l) Þ (0, 0))

where c 00 is the ground probability wave function and x nl is the elementary

wave function of level (n, l). The jump from level (i, j) to level (k, l) is

defined by c ij,kl 5 x kl 2 x ij. Thus, the probability wave function is a linear

combination of the elementary probability wave functions, namely

x 5 o
1 `

n 5 0
o
1 `

l 5 0

(n,l) Þ (0,0)

cnl x nl

The generalization to more than two components is straightforward.

2.5 Stationary Values of the Mean Energy

If x is a probability wave function and AÃan operator, then the mean
value of AÃis defined by

^ AÃ& 5
^ x *AÃx &
^ x * x &

The formalism discussed so far may be applied for building up a probabilistic
model for describing the behavior of an arbitrary system. In order to apply

it to a quantum system, we take into account that the Hamiltonian operator

HÃis the starting point of all applications of quantum mechanics. When the

one-dimensional (or multidimensional) wave function x is given, like (16)
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[or (21)], for instance, we look for the stationary points of the mean energy

of the quantum system defined by

^ EÃ& 5
^ x *HÃx &
^ x * x &

(22)

For the probability wave functions (16) and (21), the corresponding mean

energy becomes ^ E & (c1, c2,. . .) and ^ E & (c01, c10, c11, . . .), respectively. We

determine the stationary points of the mean energy by analyzing the system

of equations

- ^ E &
- cn

5 0 (n 5 1, . . . , N),

or the system of equations

- ^ E &
- cnl

5 0; (n 5 0, 1, . . . , N; l 5 0, 1, . . . , L; (n, l) Þ (0, 0))

respectively. Obviously, if the functions ! u Un are eigenfunctions of the

operator HÃ, i.e.,

HÃ( ! uUn) 5 En( ! uUn)

then the mean value of energy is

^ EÃ& 5 o
N

n 5 1
En

c2
n

o
N

l 5 1

c2
l

Similarly, in the two-dimensional case, if the functions ! uvUnVl are eigen-
functions of the operator HÃ, i.e.,

HÃ( ! uvUnVl) 5 Enl( ! uvUnVl)

then the mean value of energy is

^ EÃ& 5 o
N

n 5 0
o
L

l 5 0

(n,l) Þ (0,0)

EnlPnl

where the probability of the energy value Enl is

Pnl 5 c2
nl @ 1 o

N

n8 5 0
o
L

l8 5 0

(n8,l8) Þ (0,0)

c2
n8l8 2

Therefore, another approach is to see whether the functions ! uUn in the one-
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dimensional case, or ! uvUnVl in the multidimensional case, are eigenfunc-

tions of the Hamiltonian HÃof the system and find the corresponding eigenval-

ues as possible values of the mean energy of the respective quantum system.

3. APPLICATION 1: A FREE PARTICLE IN A ONE-
DIMENSIONAL BOX

The quantum system consists of a free particle in a box D 5 [0, a].

Having no constraints except the box itself, the statistical equilibrium is given

by the uniform probability density function u(x) 5 1/a in D; let us take

U0 [ 1, Un(x) 5 ! 2 sin
n p
a

x (n 5 1,2,. . .)

as a system of orthonormal functions with the weight u. The probability wave

function is approximated by

x (x) 5 ! u(x) o
N

n 5 1

cnUn(x) 5 1 2a 2
1/2

o
N

n 5 1

cn sin
n p
a

x

with at least one coefficient cn different from zero. As the potential energy

is equal to zero, the Hamiltonian operator is

HÃ5 2
" 2

2m

d2

dx2

where m is the mass of the particle and " 5 h/2 p , h being the Planck constant.

We have

HÃx (x) 5
" 2

2m 1 2a 2
1/2

1 pa 2
2

o
N

n 5 1
cnn

2 sin
n p
a

x

Standard integration of trigonometric functions gives

^ x HÃx & 5 #
a

0

x (x)HÃx (x) dx 5
" 2

2m 1 pa 2
2

o
N

n 5 1

c2
nn

2

^ x x & 5 #
a

0

x 2(x) dx 5 o
N

n 5 1

c2
n

Introducing these two results in

^ EÃ& 5
^ x HÃx &
^ x x &
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we get

^ EÃ& o
N

n 5 1

c2
n 5

" 2

2m 1 pa 2
2

o
N

n 5 1

c2
nn

2 (23)

Taking the partial derivatives with respect to cn (n 5 1, . . . , N), and looking

for a stationary point of the mean energy, i.e.,

- ^ EÃ&
- cn

5 0 (n 5 1, . . . , N)

we get

2cn F " 2

2m 1 pa 2
2

n2 2 ^ EÃ& G 5 0

which implies that either cn 5 0 or

^ EÃ& 5
" 2

2m 1 pa 2
2

n2 5
h2n2

8ma2

Therefore, the possible values of the energy are

En 5
h2n2

8ma2 (n 5 1, 2, . . . , N ) (24)

Introducing these values into (23), we get an equivalent expression for the

mean energy, namely,

^ EÃ& 5 o
N

n 5 1
En

c2
n

o
N

l 5 1

c2
l

(25)

which shows that

c2
n

o
N

l 5 1
c2

l

may be interpreted as being the probability that the value of the energy of

the system is En. Obviously, if only one coefficient cn is different from zero,

then ^ EÃ& 5 En, with certainty.

Remark 1. The above conclusions may be obtained without looking for

the stationary points of the energy by simply noticing that ! u(x)Un(x) is an

eigenfunction of HÃand the corresponding eigenvalue is just En. Indeed,
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HÃ( ! u(x)Un(x))

5 1 2a 2
1/2

HÃ1 sin n p
a

x 2
5 2 1 2a 2

1/2

" 2

2m

d2

dx2 1 sin n p
a

x 2
5

" 2 p 2n2

2ma2 1 2a 2
1/2

sin
n p
a

x 5 En ! u(x)Un(x)

Then, from (22) we get (25) because

^ EÃ& 5
1 K ! u o

N

l 5 1

clUl 2 1 ! u o
N

n 5 1

cn EnUn 2 L
1 K ! u o

N

l 5 1

clU l 2 1 ! u o
N

n 5 1

cnUn 2 L
5 o

N

n 5 1
En

c2
n

o
N

l 5 1

c2
l

Remark 2. The above results have been obtained without solving the

corresponding SchroÈ dinger equation. It is somehow unexpected to see that the
eigenfunctions of the Hamiltonian of this quantum system are just generalized

coordinates of a maximum-entropy probability distribution. But even more

unexpected is to subsequently see that this happens with other quantum

systems as well, which eventually will allow us to apply the same approach

even to quantum systems for which the corresponding SchroÈ dinger equation

cannot be solved exactly.

4. APPLICATION 2: A FREE PARTICLE IN A THREE-
DIMENSIONAL BOX

The quantum system consists of a free particle in a three-dimensional

box D 5 [0, a] 3 [0, b] 3 [0, c]. Having no constraints except the box
itself, the statistical equilibrium is given by the independent product of the

uniform marginals, and therefore the joint probability density function is

u(x)v(y)w(z) 5
1

a

1

b

1

c
(0 # x # a, 0 # y # b, 0 # z # c) (26)
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We take again the trigonometric system (6) as the generalized coordinates

whose weights are the uniform marginals on [0, a], [0, b], and [0, c], respec-

tively. The corresponding probability three-dimensional wave function
induced by the minimum x

Å 2 deviation from statistical equilibrium described

by (26) is

x (x, y, z) 5 ! u(x)v(y)w(z)

3 o
N

n 5 0
o
L

l 5 0
o
K

k 5 0
(n,l,k) Þ (0,0,0)

cnlkUn(x)Vl(y)Wk(z)

5 1 8

abc 2
1/2

o
N

n 5 0
o
L

l 5 0
o
K

k 5 0
(n,l,k) Þ (0,0,0)

cnlk sin
n p
a

x sin
l p
b

y sin
k p
c

z (27)

with at least one coefficient cnlk different from zero. As the potential energy

is equal to zero in D, the Hamiltonian operator is

HÃ5 2
" 2

2m
¹ 2

where ¹ 2 is the Laplacian operator. We have

HÃx (x, y, z)

5 C o
N

n 5 0
o
L

l 5 0
o
K

k 5 0

(n,l,k) Þ (0,0,0)

cnlk F 1 na 2
2

1 1 l

b 2
2

1 1 kc 2
2

G
3 sin

n p
a

x sin
l p
b

y sin
k p
c

z

where

C 5
" 2 p 2

2m 1 8

abc 2
1/2

Standard integration of trigonometric functions gives

^ x HÃx & 5
" 2 p 2

2m
o
N

n 5 0
o
L

l 5 0
o
K

k 5 0
(n,l,k) Þ (0,0,0)

c2
nlk F 1 na 2

2

1 1 l

b 2
2

1 1 kc 2
2

G
^ x x & 5 o

N

n 5 0
o
L

l 5 0
o
K

k 5 0
(n,l,k) Þ (0,0,0)

c2
nlk

Introducing these two results into
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^ EÃ& 5
^ x HÃx &
^ x x &

(28)

we get

o
N

n 5 0
o
L

l 5 0
o
K

k 5 0
(n,l,k) Þ (0,0,0)

H h2

8m F 1 na 2
2

1 1 l

b 2
2

1 1 kc 2
2

G 2 ^ EÃ& J c2
nlk 5 0

Taking the partial derivatives with respect to cnlk , and looking for a stationary

point of the mean energy, i.e.,

- ^ EÃ&
- cnlk

5 0

for (n 5 0, 1, . . . , N; l 5 0, 1, . . . , L; k 5 0, 1, . . . , K; (n, l, k) Þ (0, 0,

0)), we get either cnlk 5 0 or

^ EÃ& 5 Enlk 5
h2

8m F 1 na 2
2

1 1 l

b 2
2

1 1 kc 2
2

G
which are the possible values of the energy of the system. Introducing these

values into (28), we get an equivalent expression for the mean energy, namely,

^ EÃ& 5 o
N

n 5 0
o
L

l 5 0
o
K

k 5 0
(n,l,k) Þ (0,0,0)

Enlk pnlk (29)

which shows that

pnlk 5 c2
nlk Y 1 o

N

n8 5 0
o
L

l8 5 0
o
K

k8 5 0
(n8,l8,k8) Þ (0,0,0)

c2
n8l8k8 2

may be interpreted as being the probability that the value of the energy of

the system is Enlk . Obviously, if only one coefficient cnlk is different from

zero, then ^ EÃ& 5 Enlk, with certainty.

Remark 3. The above conclusions may be obtained without looking for

the stationary points of the energy by simply noticing that ! uvw UnVlWk is

an eigenfunction of HÃand the corresponding eigenvalue is just Enlk . Then,

from (28) we get (29).

5. APPLICATION 3: TWO NONINTERACTING FREE
PARTICLES IN A ONE-DIMENSIONAL BOX

The quantum system consists of two noninteracting free particles in a

one-dimensional box [0, a]. The domain is D 5 [0, a] 3 [0, a]. Since the
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two particles are independent and having no constraints except the box itself,

the statistical equilibrium is given by the independent product of the uniform

marginals, and therefore the joint probability density function is

u(x)v(y) 5
1

a

1

a
(0 # x # a, 0 # y # a) (30)

We take again the trigonometric system (6) as the generalized coordinates

whose weights are the uniform marginals on [0, a]. The corresponding proba-

bility two-dimensional wave function induced by the minimum x
Å 2 deviation

from statistical equilibrium described by (30) is

x (x, y) 5 ! u(x)v(y) o
N

n 5 0
o
L

l 5 0

(n,l) Þ (0,0)

cnlUn(x)Vl(y)

5
2

a
o
N

n 5 0
o
L

l 5 0
(n,l) Þ (0,0)

cnl sin
n p
a

x sin
l p
a

y (31)

with at least one coefficient cnl different from zero. As the potential energy
is equal to zero in D, the Hamiltonian operator is

HÃ5 2
" 2

2m1

- 2

- x2 2
" 2

2m2

- 2

- y2

where m1 and m2 are the masses of the two particles. We have

HÃx (x, y) 5
" 2 p 2

a3 o
N

n 5 0
o
L

l 5 0
(n,l) Þ (0,0)

cnl 1 n2

m1

1
l2

m2 2 sin
n p
a

x sin
l p
a

y

Standard integration of trigonometric functions gives

^ x HÃx & 5 1 " p
a 2

2

1

2
o
N

n 5 0
o
L

l 5 0
(n,l) Þ (0,0)

c2
nl 1 n2

m1

1
l2

m2 2
^ x x & 5 o

N

n 5 0
o
L

l 5 0
(n,l) Þ (0,0)

c2
nl

Introducing these two results into

^ EÃ& 5
^ x HÃx &
^ x x &

(32)

we get
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o
N

n 5 0
o
L

l 5 0
(n,l) Þ (0,0) F 1

2 1 " p
a 2

2

1 n2

m1

1
l2

m2 2 2 ^ EÃ& G c2
nl 5 0

Taking the partial derivatives with respect to cnl, and looking for a stationary

point of the mean energy, i.e.,

- ^ EÃ&
- cnl

5 0; n 5 0, 1, . . . , N; l 5 0, 1, . . . , L; (n, l) Þ (0, 0)

we get either cnl 5 0 or

^ EÃ& 5 Enl 5
1

2 1 " p
a 2

2

1 n2

m1

1
l2

m2 2
which are the possible values of the energy of the system. Introducing these

values into (32), we get an equivalent expression for the mean energy, namely,

^ EÃ& 5 o
N

n 5 0
o
L

l 5 0
(n,l) Þ (0,0)

Enl pnl (33)

which shows that

pnl 5 c2
nl Y 1 o

N

n8 5 0
o
L

l8 5 0

(n8,l8) Þ (0,0)

c2
n8l8 2

may be interpreted as being the probability that the value of the energy of

the system is Enl. Obviously, if only one coefficient cnl is different from zero,

then ^ EÃ& 5 Enl, with certainty.

Remark 4. The above conclusions may be obtained without looking for

the stationary points of the energy, by simply noticing that ! uv UnVl is an

eigenfunction of HÃand the corresponding eigenvalue is just Enl . Then, from

(32) we get (33).

6. APPLICATION 4: THE HARMONIC OSCILLATOR

This application deals with a quantum system which randomly oscillates
around the origin on the real axis with the variance s 2. The domain is D 5
( 2 ` , 1 ` ). As shown by Proposition 3, the statistical equilibrium on the real

axis corresponding to the mean value m 5 0 and variance s 2 is described

by the normal probability distribution N(0, s 2) whose density is
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u(x) 5
1

s ! 2 p
e 2 x2/2 s 2

( 2 ` , x , 1 ` )

We take (8) with m 5 0 as system of generalized coordinates associated to

u, namely

Un(x) 5 (2nn!) 2 1/2Hn 1 x

s ! 2 2 (n 5 0, 1, . . .)

The probability wave function is approximated by

x (x) 5 ! u(x) o
N

n 5 1

cnUn(x)

5 (2 p s 2) 2 1/4 o
N

n 5 1
(2nn!) 2 1/2cne

2 x2/4 s 2
Hn 1 x

s ! 2 2 (34)

with at least one coefficient cn different from zero. The Hamiltonian operator

of the harmonic oscillator is

HÃ5 2
" 2

2m

d2

dx2 1
1

2
kx2 (35)

where m is the reduced mass and k is the force constant. Hermite polynomials

satisfy the differential equation (Abramowitz and Stegun, 1972, p. 781)

d2

dx2 [e 2 x2/2Hn(x)] 1 (2n 1 1 2 x2)e 2 x2/2Hn(x) 5 0 (36)

Applying the operator (35) to the probability wave function (34) and taking

(36) into account, we get

HÃx (x) 5 2
" 2

2m

d 2

dx2 x (x) 1
1

2
kx2 x (x)

5 o
N

n 5 1

(2nn!) 2 1/2cn

3 F " 2

2 s 2m 1 n 1
1

2 2 2 1 " 2

8 s 4m
2

k

2 2 x2 G
3 (2 p s 2) 2 1/4e 2 x2/(4 s 2)Hn 1 x

s ! 2 2 (37)

The Hermite polynomials satisfy the following recurrence formula (Abra-

mowitz and Stegun, 1972, p. 782):
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j Hn( j ) 5 nHn 2 1( j ) 1
1

2
Hn 1 1( j )

from which we get

j 2Hn( j ) 5 n j Hn 2 1( j ) 1
1

2
j Hn 1 1( j )

5 n(n 2 1) Hn 2 2( j ) 1 1 n 1
1

2 2 Hn( j ) 1
1

4
Hn 1 2( j ) (38)

Denote

x n(x) 5 (2nn!) 2 1/2(2 p s 2) 2 1/4e 2 x2/4 s 2
Hn 1 x

s ! 2 2
Obviously, ^ x l x n & is equal to 1 if l 5 n and to 0 if l Þ n. Then, (34) and

(37) may be written as

x (x) 5 o
N

n 5 1
cn x n(x), ^ x x & 5 o

N

n 5 1
c2

n (39)

HÃx (x) 5 o
N

n 5 1

cn F " 2

2 s 2m 1 n 1
1

2 2 2 1 " 2

8 s 4m
2

k

2 2 x2 G x n(x) (40)

Applying the recurrence relation (38), we get

x2 x n(x) 5 (2nn!) 2 1/2(2 p s 2) 2 1/4e 2 x2/4 s 2
2 s 2 1 x

s ! 2 2
2

Hn 1 x

s ! 2 2
5 s 2 ! n(n 1 1) x n 2 2(x) 1 2 s 2 1 n 1

1

2 2
3 x n(x) 1 s 2 ! (n 1 1)(n 1 2) x n 1 2(x)

which implies

^ x lx
2 x n & 5 5

s 2 ! n(n 2 1) if l 5 n 2 2

2 s 2 1 n 1
1

2 2 if l 5 n

s 2 ! (n 1 1)(n 1 2), if l 5 n 1 2

0 otherwise
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Using this equality and (40), we obtain

^ x HÃx & 5 1 " 2

4 s 2m
1 k s 2 2 o

N

n 5 1

c2
n 1 n 1

1

2 2
2

1

2 1 " 2

4 s 2m
2 k s 2 2

3 1 o
N

n 5 3
cn 2 2cn ! n(n 2 1) 1 o

N 2 2

n 5 1
cncn 1 2 ! (n 1 1)(n 1 2) 2 (41)

Introducing (41) and (39) into

^ EÃ& 5
^ x HÃx &
^ x x &

(42)

we get

o
N

n 5 1 F 1 " 2

4 s 2m
1 k s 2 2 1 n 1

1

2 2 2 ^ EÃ& G c2
n

2
1

2 1 " 2

4 s 2m
2 k s 2 2

3 1 o
N

n 5 3
cn 2 2cn ! n(n 2 1) 1 o

N 2 2

n 5 1
cncn 1 2 ! (n 1 1)(n 1 2) 2 5 0 (43)

The expected value ^ EÃ& of energy depends on the probability wave function

x , i.e., it depends both on the generalized coordinates {Hn, n 5 0, 1, . . .}

and on the coefficients {cn, n 5 1, 2, . . .} associated to x . The stationary

values of the mean energy are obtained from the system of equations

- ^ EÃ&
- cn

5 0 (n 5 1, 2, . . . , N)

Using these equations and taking in (43) partial derivatives with respect

to each cn, we get

2Ancn 2
1

2
Bcn 1 2 ! (n 1 1)(n 1 2) 5 0 (n 5 1, 2)

2Ancn 2
1

2
B(cn 2 2 ! n(n 2 1) 1 cn 1 2 ! (n 1 1)(n 1 2)) 5 0 (n 5 3,4, . . . ,N 2 2)
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2Ancn 2
1

2
Bcn 2 2 ! n(n 2 1) 5 0 (n 5 N 2 1,N )

where

An 5 1 " 2

4 s 2m
1 k s 2 2 1 n 1

1

2 2 2 ^ E & , B 5
" 2

4 s 2m
2 k s 2

This homogeneous system consists of N linear equations with N
unknowns c1, . . . , cN . Either c1 5 . . . 5 cN 5 0, which corresponds to the

statistical equilibrium described by the probability distribution N (0, s 2), or
B 5 0 and An 5 0 for the values of n for which cn Þ 0. But B 5 0 implies

s 2 5
"

2 ! mk
(44)

which is a mathematical expression of the correspondence principle: If we

neglect " (i.e., " ® 0), or if the relative mass m is large (i.e., m ® 1 ` ), or

if the force k is strong (i.e., k ® 1 ` ), then the variance s 2 becomes negligible

(i.e., s 2 ® 0) and we obtain the classical harmonic oscillator whose behavior

has nothing random in it and for which equilibrium means having the deviation

from origin equal to zero. As for the equalities An 5 0, if cn Þ 0, they show
the possible values of the energy. Thus, if x 5 x n, then An 5 0 becomes

^ EÃ& 5 En 5 1 " 2

4 s 2m
1 k s 2 2 1 n 1

1

2 2
which, taking into account (44), becomes

En 5 " ! k

m 1 n 1
1

2 2 (45)

Introducing (39), (41), and (44) into (42) and taking (45) into account, we get

^ EÃ& 5 o
N

n 5 1
En

c2
n

o
N

l 5 1
c2

l

which shows that

c2
n

o
N

l 5 1

c2
l

may be interpreted as being the probability that the value of energy is En.
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7. APPLICATION 5: THE HYDROGEN ATOM

The hydrogen atom consists of a proton fixed at the origin and an electron
of reduced mass m interacting with the proton through a Coulomb potential:

U(r) 5 2
e2

4 p e 0r

where e is the charge on the proton, e 0 is the permitivity of free space,

and r is the distance between the electron and the proton, namely, r 5
(x2 1 y2 1 z2)1/2.

The Hamiltonian is

HÃ5 2
" 2

2m
¹ 2 1 U(r)

where ¹ 2 is the Laplacian.

7.1. The Ground State

As the Coulomb potential depends only on

r(x, y, z) 5 ! x2 1 y2 1 z2

the statistical equilibrium should also depend only on r(x, y, z). As the

range of r(x, y, z) is [0, 1 ` ), according to Proposition 2, the most unbiased

probability distribution on [0, 1 ` ) subject to the mean value m is the exponen-

tial distribution E( m ), with the density

g(x, y, z) 5 M
1

m
e 2 r(x, y,z)/ m

where M is a positive constant. The model itself suggests that we use a

spherical coordinate system with the proton at the origin, namely,

x 5 r sin u cos v , y 5 r sin u , sin v , z 5 r cos u

Taking s 5 cos u , the element of volume in the three-dimensional Euclidean

space becomes

dx dy dz 5 r 2 sin u dr d u d v 5 r2dr ds d v

The three variables r, s, v are independent and their ranges are 0 # r , 1 ` ,

2 1 # s # 1, 0 # v # 2 p . Therefore, the statistical equilibrium of the

hydrogen atom is described by the probability density function
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g(x, y, z) dx dy dz 5 M
1

m
exp( 2 ! x2 1 y2 1 z2/ m ) dx dy dz

5 M
1

m
e 2 r/ur 2 dr ds d v

where the positive constant M is determined from

1 5 # R
3
g(x, y, z) dx dy dz

5 M #
1 `

0

1

m
r 2e 2 r/ m dr #

1

2 1

ds #
2 p

0

d v 5 M(2 m 3)(2)(2 p ) 5 8 p m 3M

which implies M 5 1/(8 p m 3), and

g(x, y, z) 5
1

8 p m 3 exp( 2 ! x2 1 y2 1 z2/ m ) 5
1

8 p m 3 e 2 r(x,y,z)/ m

Denoting

u(r) 5
1

2 m 3 r 2e 2 r/ m (0 # r , 1 ` )

v(s) 5
1

2
( 2 1 # s # 1); w( v ) 5

1

2 p
(0 # v # 2 p )

we can write

g(x, y, z) dx dy dz 5
1

8 p m 3 exp( 2 ! x2 1 y2 1 z2/ m )dx dy dz

5
1

8 p m 3 e 2 r/ m r2 dr ds d v

5 u(r)v(s)w( v )dr ds d v (46)

Statistical equilibrium is therefore described in the space [0, 1 ` ) 3 [ 2 1,

1 1] 3 [0, 2 p ] by the uniform probability distribution U(0, 2 p ) on [0, 2 p ]
for v , the uniform probability distribution U( 2 1, 1 1) on [ 2 1, 1] for s, and

the gamma distribution G(1/ m , 3) with parameters 1/ m and 3, on [0, 1 ` ),

for the radial variable r. The ground probability wave function induced by

the probability density function g(x, y, z) is
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c 0(x, y, z) 5 ! g(x, y, z) 5
1

! p 1 1

2 m 2
3/2

e 2 r(x,y,z)/(2 m ) (47)

As c 0 depends only on the radial distance r(x, y, z), we have

¹ 2 c 0 5
d 2 c 0

dr 2 1
2

r

d c 0

dr
5 1 1

4 m 2 2
1

m r 2 c 0 (48)

In general, if the function g depends only on r 5 ( ( n
i 5 1 x2

i )
1/2 in Rn, then

g is integrable in Rn if and only if g(r) rn 2 1 is integrable on [0, 1 ` ), and

we have

# R
n

g(x1, . . . , xn) dx1 . . . dxn 5 Sn #
1 `

0

g(r)rn 2 1 dr

where Sn is the area of the sphere in Rn with radius 1, namely, S1 5 2, S2 5
2 p , S3 5 4 p , etc. Consequently, using (47) and (48), we get

# R3
c 0 ¹ 2 c 0 dx dy dz 5 2

1

4 m 2

and, similarly,

^ EÃ& 5 # R3
c 0 HÃc 0 dx dy dz 5

" 2

8m m 2 2
e2

8 p e 0 m
(49)

Using a 5 1/ m , the mean energy becomes

^ EÃ& 5
" 2

8m
a 2 2

e2

8 p e 0

a

Looking for a value of a for which the mean energy ^ EÃ& is stationary, we have

- ^ EÃ&
- a

5 0 if and only if a 5
e2m

2 " 2 p e 0

or m 5
2 " 2 p e 0

me2 5
a0

2

where a0 5 4 p e 0 " 2/(me2) is the Bohr radius. Introducing this value of m into

(49), we get

^ EÃ& 5 2
1

2 1 e2

4 p e 0 2
2

m

" 2

The mean location of the electron, i.e., the mean distance from the nucleus, is
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# R3
r(x, y, z)g(x, y, z) dx dy dz 5 # [0, 1 ` ) 3 [ 2 1,1] 3 [0,2 p ]

r
1

8 p m 3 e 2 r/ m r 2 dr ds d v

5 #
1 `

0

1

8 p m 3 r 3e 2 r/ m dr #
1

2 1

ds #
2 p

0

d v

5 3 m 5
3

2
a0

Denoting by u(r) the radial probability density, we have

u(r) 5 # [ 2 1,1] 3 [0,2 p ]

1

8 p m 3 e 2 r/ m r 2 ds d v

5
1

8 p m 3 r 2e 2 r/ m dr #
1

2 1

ds #
2 p

0

d v 5
1

2 m 3 r 2e 2 r/ m

which is the gamma probability distribution with parameters 1/ m and 3. Its

mean value and variance are 3 m and 3 m 2 5 (3/4)a2
0, respectively. The most

probable location of the electron, i.e., the most probable distance from the

nucleus, is given by the root of the equation

u8(r) 5
1

2 m 3 re 2 r/ m 1 2 2
r

m 2 5 0

which gives r 5 2 m 5 a0, i.e. the Bohr radius.

7.2. Jumps from the Ground State

As we have just seen, the probability density corresponding to statistical

equilibrium is

g(x, y, z) dx dy dz 5
1

8 p m 3 e 2 r(x,y,z)/ m dx dy dz

5
1

8 p m 3 exp( 2 ! x2 1 y2 1 z2/ m ) dx dy dz

5 g(x(r, u , v ), y(r, u , v ), z(r, u , v ))r 2 sin u dr d u d v

5 g(r sin u cos v , r sin u sin v , r cos u )r 2 sin u dr d u d v

5
1

8 p m 3 r 2e 2 r/ m sin u dr d u d v

5
1

2 m 3 r 2e 2 r/ m 1

2

1

2 p
dr ds d v 5 u(r)v(s)w( v ) dr ds d v
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According to (5), (6), (9), and (17), any probability density function q in the

space [0, 1 ` ) 3 [ 2 1, 1] 3 [0, 2 p ] may be written as

q(r, s, v ) dr ds d v

5 u(r)v(s)w( v )

3 3 1 1 o
1 `

n 5 0
o
1 `

l 5 0
o
1 `

k 5 0
(n,l,k) Þ (0,0,0)

cnlkUn(r)Vl(s)Wk( v ) 4 dr ds d v (50)

where Un(r) is the generalized Laguerre polynomial L(2)
n (r/ m ), Vl(s) is the

Legendre polynomial Pl (s), and Wk( v ) is the trigonometric function ! 2

sin(k v /2) with L(2)
0 [ 1, P0 [ 1, and W0 [ 1. The marginal probability

density corresponding to the radial variable r is

#
1

2 1 #
2 p

0

q(r, s, v ) ds d v 5
1

2 m 3 r2e 2 r/ m F 1 1 o
1 `

n 5 1
cn00 L(2)

n 1 r

m 2 G dr

5
1

8 p m 3 e 2 r(x,y,z)/ m F 1 1 o
1 `

n 5 1
cn00 L(2)

n 1 r(x, y, z)

m 2 G dx dy dz

5 f(x, y, z) dx dy dz (51)

Focusing on the radial variable r, the probability wave function induced by

the deviation of the probability density f(x, y, z) from the ground probability

density g(x, y, z) which describes the statistical equilibrium is

x (r) 5
f 2 g

! g
5

1

! 8 m 3 p
e 2 r/(2 m ) o

1 `

n 5 1

cn00L
(2)
n (r/ m ) 5 o

1 `

n 5 1

cn00 x n

The ground probability wave function is

c 0(r) 5
1

! 8 p m 3
e 2 r/(2 m )

For b 5 2, equality (10) becomes

L(2)
n (x) 2 L(2)

n 2 1(x) 5 L(1)
n (x) (52)

The simple jump from the ground state is

c 1(r) 5 x 1 2 x 0 5
1

! 8 p m 3
e 2 r/(2 m )[L(2)

1 (r/ m ) 2 L(2)
0 (r/ m )]

which, taking into account (52), gives
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c 1(r) 5
1

! 8 p m 3
e 2 r/(2 m )L(1)

1 (r/ m ) 5 c 0(r)L
(1)
1 (r/ m )

Similarly, the simple jump from the elementary probability wave function

x n 2 1 to the next elementary probability wave function x n is

c n(r) 5 x n 2 x n 2 1 5
1

! 8 p m 3
e 2 r/(2 m )[L(2)

n (r/ m ) 2 L(2)
n 2 1(r/ m )]

which, taking into account (52), may be written as

c n(r) 5
1

! 8 p m 3
e 2 r/(2 m )L(1)

n (r/ m ) 5 c 0(r)L
(1)
n (r/ m ) (53)

For b 5 1, equality (11) becomes

x
d 2

dx2 L(1)
n (x) 1 (2 2 x)

d

dx
L(1)

n (x) 1 nL(1)
n (x) 5 0 (54)

From (53), we get

d

dr
c n(r) 5 c 0(r) F 2

1

2 m
L(1)

n (r/ m ) 1
d

dr
L(1)

n (r/ m ) G (55)

and also

d2

dr 2 c n(r) 5 c 0(r) F 1

4 m 2 L(1)
n (r/ m ) 2

1

m
d

dr
L(1)

n (r/ m )

1
d 2

dr 2 L(1)
n (r/ m ) G (56)

Replacing x by r/ m in (54), we get

r

m
d 2

d(r/ m )2 L(1)
n (r/ m ) 1 1 2 2

r

m 2 d

d(r/ m )
L(1)

n (r/ m ) 1 nL (1)
n (r/ m ) 5 0

which, dividing by r/ m . 0 and taking into account that

d(r/ m ) 5
1

m
dr and d(r/ m )2 5

1

m 2 dr2

becomes

d 2

dr 2 L(1)
n (r/ m ) 1 1 2r 2

1

m 2 d

dr
L(1)

n (r/ m ) 5 2
n

r m
L(1)

n (r/ m ) (57)
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Introducing (56) and (55) into

¹ 2 c n 5
d 2 c n

dr 2 1
2

r

d c n

dr

using (57), and taking (53) into account, we get

¹ 2 c n 5 c 0(r) 1 1

4 m 2 2
1

m r
2

n

m r 2 L(1)
n (r/ m ) 5 1 1

4 m 2 2
n 1 1

m r 2 c n(r)

Taking this result into account, the Hamiltonian

HÃ5 2
" 2

2m
¹ 2 2

e2

4 p e 0r

applied to the probability wave function c n gives

HÃc n(r) 5 F 2
" 2

8m m 2 1 1 "
2(n 1 1)

2m m
2

e2

4 p e 0 2 1

r G c n(r) (58)

The probability wave function c n is an eigenfunction of the Hamiltonian HÃ

if the coefficient of c n in (58) does not depend on 1/r, which happens if

m 5
4 p e 0 " 2(n 1 1)

2me2 (59)

Introducing (59) into (58), we get

HÃc n(r) 5 2
me4

32 p 2 e 2
0 " 2(n 1 1)2 c n(r) (60)

Therefore, the value of energy corresponding to c n is

En 5 2
1

2 1 e2

4 p e 0 2
2

m

" 2(n 1 1)2 (n 5 0, 1,. . .) (61)

Remark 5. In this section we have used the spherical coordinates (r, u ,

v ) in the space [0, 1 ` ) 3 [0, p ] 3 [0, 2 p ], or, equivalently, the coordinates

(r, s, v ) in the space [0, 1 ` ) 3 [ 2 1, 1] 3 [0, 2 p ], where s 5 cos u . As

shown in (46), in obtaining a probabilistic model for the behavior of the
hydrogen atom we started from a statistical equilibrium described by the

gamma distribution G(1/ m , 3) for the radial variable r on [0, 1 ` ), the uniform

distribution for s on [ 2 1, 1], and the uniform distribution for v on [0, 2 p ].

In its general form, the probability wave function has the form
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x (r, s, v ) 5 c 0(r) o
1 `

n 5 0
o
1 `

l 5 0
o
1 `

k 5 0
(n,l,k) Þ (0,0,0)

cnlkUn(r)Vl(s)Wk( v ) (62)

where c 0(r) is the probability wave function (47) of the ground state, Un(r)
is the generalized Laguerre polynomial L(2)

n (r/ m ), Vl(s) is the Legendre polyno-

mial Pl(s), and Wk( v ) is the trigonometric function ! 2 sin (k v /2), as discussed

in Section 2. In all the considerations made in this section we focused on

the radial variable r and, instead of (62), we dealt with the simpler probability
wave function

x (r) 5 c 0(r) o
1 `

n 5 1

cn00Un(r)V0(s)W0( v )

where V0 [ 1, W0 [ 1. In the general context, the jumps (53) should be

replaced by

c nlk,n8l8k8(r, s, v ) 5 c 0(r)[Un(r)Vl(s)Wk( v ) 2 Un8(r)Vl8(s)Wk8( v )]

Remark 6. The probabilistic model for the hydrogen atom, just discussed,
started from the statistical equilibrium described by the exponential

distribution

g(x, y, z) 5 M
1

m
e 2 r(x,y,z)/ m

which is the solution of the principle of maximum entropy maxg H(g) subject

to the mean value m , or, equivalently, the solution of the principle of minimum
relative entropy ming H(g | 1) on [0, 1 ` ), where 1 5 r0 (x, y, z), in which

case the radial probability density on 0 # r , 1 ` is

u(r) 5
1

2 m 3 r2e 2 r/ m

i.e., the gamma distribution G(1/ m , 3), and the system of orthogonal polynomi-
als with the weight u is the sequence of generalized Laguerre polynomials

{L(2)
n (r/ m ), n 5 0, 1, . . .}. This proved to be enough for getting the entire

energy spectrum (61) of the hydrogen atom. The approach can be generalized

if we start from the statistical equilibrium described by the solution of the

principle of minimum relative entropy ming H(g | r2l(x, y, z)), which is the

gamma probability distribution G(1/ m , 2l 1 1), whose density is

g(x, y, z) 5
1

G (2l 1 1) 1 1

m 2
2l 1 1

r2l(x, y, z)e 2 r(x,y,z)/ m
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in which case the radial probability density on 0 # r , 1 ` is

u(r) 5 M 1 1

m 2
2l 1 3

r2l 1 2e 2 r/ m (M constant)

i.e., the gamma distribution G(1/ m , 2l 1 3), and the system of orthogonal

polynomials with the weight u is the sequence of generalized Laguerre

polynomials {L(2l 1 2)
n (r/ m ), n 5 0, 1, . . .}. The simple jumps are in this case

described by the probability wave functions

c n(r) 5 ! u(r)[L(2l 1 2)
n (r/ m ) 2 L(2l 1 2)

n 2 1 (r/ m )] 5 ! u(r)L(2l 1 1)
n (r/ m )

8. CONCLUSION

In standard nonrelativistic quantum mechanics, the SchroÈ dinger equation

is taken as a postulate and the squared absolute value of its solution is
interpreted as being a probability density function used for making predictions

about the behavior of quantum systems. This paper deals with a nonstandard

approach. Given a quantum system, we determine the probability wave func-

tion whose corresponding probability distribution (i.e., the square of its abso-

lute value) is the closest one to statistical equilibrium subject to generalized
correlation coefficients whose values are obtained by looking for the stationary

points of the mean energy of the system. Statistical equilibrium, determined by

using the principle of maximum entropy, gives the most unbiased probability

distribution on the possible states of the system subject to given mean values.

The closest probability distribution to statistical equilibrium is obtained by

minimizing Pearson’ s mean deviation subject to given generalized correlation
coefficients whose values are obtained, as said before, by looking for station-

ary points of the mean energy of the system.

Whether nature is acting according to the principle of minimum mean

deviation from statistical equilibrium is a matter of philosophy. This paper

uses this principle only as a tool for constructing a mathematical model for the

behavior of quantum systems. Surprisingly enough, this variational method
recovers, in a unitary way, the exact solutions for the harmonic oscillator,

the free particle in a box, two independent particles in a box, and the hydrogen

atom, without using the SchroÈ dinger equation, and is in agreement with Ernst

Mach’s economy of thought principle. The method used in this paper may

be briefly called the miniminimax model, which is an abbreviation for `min-

imizing the mean (ground or transition) energy corresponding to the probabil-
ity wave function obtained by minimizing the mean deviation from maximum

entropy condition subject to generalized correlations.’ According to McQuar-

rie (1983, p. 297), ª the inclusion of electron correlations in atomic and

molecular wave functions is a problem of current and active interest.º The
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second part of this paper will show that the formalism presented above gives

excellent simple approximations when it is applied to the ground state of the

helium and lithium atoms.
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